Matrilin-3 Chondrodysplasia Mutations Cause Attenuated Chondrogenesis, Premature Hypertrophy and Aberrant Response to TGF-β in Chondroprogenitor Cells

نویسندگان

  • Chathuraka T. Jayasuriya
  • Fiona H. Zhou
  • Ming Pei
  • Zhengke Wang
  • Nicholas J. Lemme
  • Paul Haines
  • Qian Chen
چکیده

Studies have shown that mutations in the matrilin-3 gene (MATN3) are associated with multiple epiphyseal dysplasia (MED) and spondyloepimetaphyseal dysplasia (SEMD). We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT) MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in chondroprogenitors carrying the MED or SEMD MATN3 mutations. Hypertrophic marker collagen X remained attenuated in WT MATN3 chondroprogenitors, whereas its expression was elevated in chondroprogenitors expressing the MED or SEMD mutant MATN3 gene suggesting that these mutations inhibit chondrogenesis but promote hypertrophy. TGF-β treatment failed to rescue chondrogenesis markers but dramatically increased collagen X mRNA expression in mutant MATN3 expressing chondroprogenitors. Synovium derived mesenchymal stem cells harboring the SEMD mutation exhibited lower glycosaminoglycan content than those of WT MATN3 in response to TGF-β. Our results suggest that the properties of progenitor cells harboring MATN3 chondrodysplasia mutations were altered, as evidenced by attenuated chondrogenesis and premature hypertrophy. TGF-β treatment failed to completely rescue chondrogenesis but instead induced hypertrophy in mutant MATN3 chondroprogenitors. Our data suggest that chondroprogenitor cells should be considered as a potential target of chondrodysplasia therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrilin-3 Role in Cartilage Development and Osteoarthritis.

The extracellular matrix (ECM) of cartilage performs essential functions in differentiation and chondroprogenitor cell maintenance during development and regeneration. Here, we discuss the vital role of matrilin-3, an ECM protein involved in cartilage development and potential osteoarthritis pathomechanisms. As an adaptor protein, matrilin-3 binds to collagen IX to form a filamentous network ar...

متن کامل

Differential expression of TGF-β superfamily members and role of Smad1/5/9-signalling in chondral versus endochondral chondrocyte differentiation

Proteins of the transforming-growth-factor-β (TGF-β)-superfamily have a remarkable ability to induce cartilage and bone and the crosstalk of TGF-β - and BMP-signalling pathways appears crucial during chondrocyte development. Aim was to assess the regulation of TGF-β-superfamily members and of Smad2/3- and Smad1/5/9-signalling during endochondral in vitro chondrogenesis of mesenchymal stromal ce...

متن کامل

Hdac4 Enhances Synovium-derived Stem Cell-based Chondrogenesis Induced by Tgf-β1

Introduction Transforming growth factor beta (TGF-β) superfamily members play diverse roles in cartilage development and maintenance. TGF-β not only up-regulates a number of molecules associated with prechondrogenic condensation, it also up-regulates chondrogenic gene expression through several signaling pathways. Moreover, TGF-β has been reported to inhibit osteoblast differentiation by repres...

متن کامل

Phenotypic characterization of equine synovial fluid-derived chondroprogenitor cells

Background: Progenitor cells exist in most tissues and body fluids. Synovial fluid chondroprogenitor cells have been described in several species; however, the specific phenotypic characteristics of these cells have not been defined. This study addressed the impacts of joint location and donor age variation on synovial fluid chondroprogenitor numbers, and determined whether synovial fluid chond...

متن کامل

Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System

Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014